

SESSION 10D03 – Modeling & Computation in Energy & the Environment **CED NODELING OF A NOLTEN SLAG JET FREE SURFACE FLOW DURING NOLTEN SCIENCE SURFACE FLOW DURING NOLTEN SCIENCE SURFACE FLOW DURING**

Minneapolis, MN, Tuesday the 18th of October, 2011

Dr. DIMITRIOS I. GEROGIORGIS Prof. DIMITRIOS PANIAS Prof. IOANNIS PASPALIARIS

OUTLINE OF PRESENTATION

- Mineral wool fiberization Mathematical modeling strategy
- Thermophysical properties of molten slag: Literature review
- Dimensional Analysis: Deriving dimensionless numbers
- CFD analysis of nonisothermal free surface vertical flow
- Conclusions on process design and future research goals

AGENDA

- Mineral wool fiberization Mathematical modeling strategy
- Thermophysical properties of molten slag: Literature review
- Dimensional Analysis: Governing dimensionless numbers
- CFD analysis of nonisothermal vertical free surface flow
- Conclusions on process design and future research goals

CONVENTIONAL MINERAL FIBERIZATION PROCESSES

OWENS PROCESS

- Air/steam melt-blowing process
- Melt emerging from Pt crucible
- Use of downward gas jet
- Fiber length: 3 10 cm

ROCK WOOL PROCESS

- One-step centrifugal process
- Melt distribution @ 1st cylinder
- Multiple rotating cylinders
- Fiber length: 3 10 cm

ROTARY PROCESS

- Two-step rotary process
- Rotating Pt/steel melt distributor
- Entrainment by combustion gases
- Fiber diameter: 3 6 µm

MOLTEN SLAG HANDLING PROCESS: SCHEMATIC

MINERAL WOOL FIBERIZATION: SCHEMATIC

MOLTEN SLAG JET FREE SURFACE FLOW IN MINERAL WOOL FIBERIZATION DIMITRIOS I. GEROGIORGIS AIChE 2011 ANNUAL MEETING

MINERAL WOOL FIBERIZATION: PROCESS OVERVIEW

7

MOLTEN SLAG JET FREE SURFACE FLOW IN MINERAL WOOL FIBERIZATION DIMITRIOS I. GEROGIORGIS AICHE 2011 ANNUAL MEETING

8

MINERAL WOOL FIBERIZATION MODELING: STRATEGY

ZONE I: MOLTEN SLAG BULK FLOW

Macroscopic free surface laminar flow zone Nonisothermal field (molten slag jet cooling) St. state homogeneous field, high observability

ZONE II: MINERAL FIBER GENERATION

Microscopic molten slag fiber generation zone Isothermal field (very low residence time) Dynamic inhomogeneous field, low observability

ZONE III: DISPERSED FLOW OF FIBERS

Macroscopic dispersed flow zone Nonisothermal field (fiber cooling+elongation) Dynamic inhomogeneous field, med observability

AGENDA

- Mineral wool fiberization Mathematical modeling strategy
- Thermophysical properties of molten slag: Literature review
- Dimensional Analysis: Governing dimensionless numbers
- CFD analysis of nonisothermal vertical free surface flow
- Conclusions on process design and future research goals

Oxide	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	FeO
vi	25.178	24.227	39.126	44.457	11.731
μ	-0.0025	0.0027	-0.0096	-0.0229	0.0138
Oxide	MgO	CaO	Na_2O	K_2O	
v_i	14.110	18.677	35.872	49.978	
μ	0.0041	0.0081	0.0158	0.0190	

11

12

T (°C)	STOICH.	5.0 % C	7.5 % C	10.0 % C	TARGET
1300	<u>2.755</u>	2.713	2.709	2.712	2.664
1400	2.740	2.703	2.701	2.705	2.648
1500	2.726	2.693	2.692	2.699	2.633
1600	2.711	2.683	2.684	2.692	2.618
1700	2.697	2.674	2.676	2.685	2.604
1800	2.683	2.664	2.668	2.678	<u>2.589</u>

LAKATOS method

$$\log \eta = B_0 + \frac{B_1}{T + T_0}$$

$$T = A \left(\frac{b_0 - SiO_2 - b_1 \cdot Al_2O_3}{b_2 \cdot CaO + b_3 \cdot MgO + b_4 \cdot Alk + b_5 \cdot FeO + b_6 \cdot Fe_2O_3} \right)$$

Ceofficient	$\log \eta = 1.5$	$\log \eta = 2.0$	$\log \eta = 2.5$
А	1375.76	1272.64	1192.44
b ₀	122.29	117.64	112.99
b_1	1.06247	1.05336	1.03567
b_2	1.57233	1.42246	1.27336
b_3	1.61648	1.48036	1.43136
b_4	1.44738	1.51099	1.41448
b_5	1.92899	1.86207	1.65966
<i>b</i> ₆	1.47337	1.36590	1.20929

13

VISCOSITY OF SILICATE MELTS (Browning et al., 2003)

BROWNING method

$$\log\left(\frac{\eta}{T-T_{\rm s}}\right) = \frac{14788}{T-T_{\rm s}} - 10.931$$

$$T_{\rm s} = 306.63 \ln(A) - 574.31$$

$$A = (3.19Si^{4+} + 0.855Al^{3+} + 1.6K^{+})/$$

(0.93Ca²⁺ + 1.50Feⁿ⁺ + 1.21Mg²⁺ + 0.69Na⁺
1.35Mnⁿ⁺ + 1.47Ti⁴⁺ + 1.91S²⁻)

$$SI^{4+} + AI^{3+} + Ca^{2+} + Fe^{n+} + Mg^{2+} + Na^{+} + K^{+} + Mn^{n+} + TI^{4+} + S^{2-} = 1$$

15

T (°C)	STOICH.	5.0 % C	7.5 % C	10.0 % C	TARGET
1300	0.567	0.678	0.710	0.712	<u>3.046</u>
1400	0.265	0.312	0.325	0.326	1.204
1500	0.133	0.154	0.160	0.161	0.523
1600	0.071	0.081	0.084	0.084	0.247
1700	0.040	0.045	0.047	0.047	0.125
1800	<u>0.024</u>	0.027	0.027	0.027	0.067

SURF. TENSION OF SILICATE MELTS (Dudek et al., 2009)

YOUNG-LAPLACE EQN.

HIGH ACCURACY via ODE-BASED OPTIMIZATION

16

$$p = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = 2\gamma H$$

SURF. TENSION OF SILICATE MELTS: LITERATURE DATA

Surface Tension of CaO-Al₂O₃-SiO₂ Oxide Melts

I. A. Magidson, A. V. Basov, and N. A. Smirnov

Chemical compositions of the charges and surface tension σ of CaO–Al₂O₃–SiO₂ melts

Chemical composition, wt %		A mN/m	R mN/(m K)	σurra mN/m	δ mN/m	Temperature	
CaO	Al ₂ O ₃	SiO ₂	71, III WIII	<i>b</i> , m (m x)	01550, 111 (111	05, 111 / 11	range, °C
60	30	10	674.5	0.094	503	0.6	1557-1415
55	35	10	679.3	0.0945	507	0.6	1583-1410
50	40	10	704.2	0.1065	510	0.45	1575-1420
45	45	10	712.8	0.109	514	0.8	1550-1410
60	25	15	719.7	0.1315	480	1.1	1590-1410
55	30	15	728.9	0.134	484.5	0.35	1585-1415
50	35	15	743.7	0.141	486.5	1.15	1540-1410
45	40	15	738.8	0.135	492.5	0.85	1595-1420
60	20	20	756.3	0.163	459	0.35	1575-1420
55	25	20	757.9	0.162	462.5	0.35	1585-1410
50	30	20	771.5	0.1675	466	0.7	1565–1420

Surface Tension of CaO-Al₂O₃, CaO-SiO₂, and CaO-Al₂O₃-SiO₂ Melts

N. A. Arutyunyan^a, A. I. Zaitsev^b, and N. G. Shaposhnikov^b

Table 1. Surface tension and molar volumes (m³/mol) $V = x[1 + (T - 1773) \times 10^{-4}] \times 10^{-6}$ of pure components [13]

Component	σ, mN/m	x	
CaO	645.2 - 0.097(<i>T</i> -2873)	20.7	
Al ₂ O ₃	721.2 - 0.078(<i>T</i> -2313)	28.3	
SiO ₂	243.2 + 0.031T	27.516	

Table 2. Parameters characterizing excess Gibbs energy on the surface and molar surface of $CaO-Al_2O_3-SiO_2$ melt and its binary components

i	j	k	, surf	^{1}A ^{2}A
CaO	Al ₂ O ₃	SiO ₂	L_{ijk} , J/mol	m ² /mol
1	1	0	95101 – 70 <i>T</i>	
1	0	1	-56978 - 12.6T	-74851-9.17 -50632
2	0	2	-121900	
0	1	1	-37614	-1473.3
1	1	1	63598	

18

AGENDA

- Mineral wool fiberization Mathematical modeling strategy
- Thermophysical properties of molten slag: Literature review
- Dimensional Analysis: Governing dimensionless numbers
- CFD analysis of nonisothermal vertical free surface flow
- Conclusions on process design and future research goals

MELT BLOW FIBERIZATION: OPERATING PRINCIPLE

GOVERNING PROCESS VARIABLES

AIChE 2011 ANNUAL MEETING

melt density: dynamic viscosity of the melt: η (kg.m⁻¹.s⁻¹) surface tension of the melt: radius of the orifice: final radius of the vertical stream: B (m) height of the vertical stream: radius of the impinging air jet: melt flow rate:

air density: dynamic viscosity of air: air flow rate: melt temperature: air temperature: temperature difference:

 ρ (kg.m⁻³) σ (kg.s⁻²) *R* (m) L (m) $R_G(m)$ $q_V({\rm m}^3.{\rm s}^{-1})$

 $\rho_G(\text{kg.m}^{-3})$ η_G (kg.m⁻¹.s⁻¹) q_{VG} (m³.s⁻¹) $T_L(\mathbf{K})$ $T_G(\mathbf{K})$ $\Delta T = T_L - T_G(\mathbf{K})$

MELT BLOW FIBERIZATION: DIMENSIONAL ANALYSIS

• Dimensional system (M, L, T, Θ):

	ρ	R	η	T_L	L	σ	q_V	В	ΔT	q_{VG}	R_G	η_G	ρ_G	T_G	d_F
Μ	1	0	1	0	0	1	0	0	0	0	0	1	1	0	0
L	-3	1	-1	0	1	0	3	1	0	3	1	-1	-3	0	1
Т	0	0	-1	0	0	-2	-1	0	0	-1	0	-1	0	0	0
Θ	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0
$Z_1 = 1$ $Z_2 = 2$ $Z_3 = -2$ $Z_4 = 0$	$\mathbf{M} + \mathbf{T}$ $\mathbf{3M} + \mathbf{I}$ $- \mathbf{T}$ Θ	L + 2T													
	ρ	R	η	T_L	L	σ	q_V	В	ΔT	q_{VG}	R_G	η_G	$ ho_G$	T_G	d_F
Z_1	1	0	0	0	0	-1	-1	0	0	-1	0	0	1	0	0
Z_2	0	1	0	0	1	-1	1	1	0	1	1	0	0	0	1
Z_3	0	0	1	0	0	2	1	0	0	1	0	1	0	0	0
Z_4	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0

CORE MATRIX

RESIDUAL MATRIX

22

$$N_{1} = \frac{L}{R}, \qquad N_{2} = \frac{\rho R \sigma}{\eta^{2}}, \qquad N_{3} = \frac{\rho q_{V}}{\eta R}, \qquad N_{4} = \frac{B}{R}, \qquad N_{5} = \frac{\Delta T}{T_{L}},$$

$$N_{6} = \frac{\rho q_{VG}}{\eta R}, \qquad N_{7} = \frac{R_{G}}{R}, \qquad N_{8} = \frac{\eta_{G}}{\eta}, \qquad N_{9} = \frac{\rho_{G}}{\rho}, \qquad N_{10} = \frac{T_{G}}{T_{L}}, \qquad N_{11} = \frac{d_{F}}{R}$$
Derivation of equivalent dimensionless numbers
$$M_{1} = \frac{N_{1}^{2}}{N_{2}} = \frac{\eta^{2}}{\rho R \sigma}, \qquad M_{2} = \frac{N_{3}}{\sqrt{N_{2}}} \frac{1}{N_{4}} = \frac{q_{V}}{B} \sqrt{\frac{\rho}{\sigma R}}, \qquad M_{3} = \frac{N_{6}}{\sqrt{N_{2}}} \frac{1}{N_{4}} = \frac{q_{VG}}{B} \sqrt{\frac{\rho}{\sigma R}}, \qquad M_{4} = N_{4} = \frac{B}{R},$$

$$M_5 = N_5 = \frac{\Delta T}{T_L}, \qquad M_6 = \frac{N_3}{N_6} = \frac{q_V}{q_{VG}} \qquad \qquad M_7 = N_7 = \frac{R_G}{R} \qquad \qquad M_8 = N_8 = \frac{\eta_G}{\eta}$$

$$M_9 = N_9 = \frac{\rho_G}{\rho}, \quad M_{10} = N_{10} = \frac{T_G}{T_L}, \quad M_{11} = N_{11} = \frac{d_V}{R}$$

CHARACTERISTIC DIMENSIONLESS NUMBERS

characteristic dimensionless flow number:

$$\Pi_{3} = q_{V}^{*} = M_{2} = \frac{q_{V}}{B} \sqrt{\frac{\rho}{\sigma R}};$$

characteristic dimensionless viscosity number:

$$\Pi_4 = Z = M_1 = \frac{\eta^2}{\rho R \sigma};$$

(inverse Laplace number)

characteristic dimensionless temperature number:

$$\Pi_{5} = T^{*} = M_{5} = \frac{\Delta T}{T_{L}};$$

Characteristic dimensionless flow number: (Lubanska number, 1970)

$$\Pi_{6} = Lu = \left(1 + \frac{q_{V}\rho}{q_{VG}\rho_{G}}\right)\frac{v}{v_{G}} = \left[\left(1 + \frac{q_{m}}{q_{mG}}\right)\frac{v}{v_{G}}\right] = \left[\left(1 + M_{6} \cdot M_{7}\right)M_{8} \cdot M_{9}\right].$$

gradual simplification

$$M_{11} = \frac{d_V}{R} = \frac{d_V}{R} (M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8, M_9, M_{10}, M_{11})$$

AIChF

$$M_{11} = \frac{d_V}{R} = \frac{d_V}{R} (M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8, M_9)$$

 $d_F = a_0 \cdot \Pi_1^{a_1} \cdot \Pi_2^{a_2} \cdot \Pi_3^{a_3} \cdot \Pi_4^{a_4} \cdot \Pi_5^{a_5} \cdot \Pi_6^{a_6}$

 a_i (*i* = 0 to 6) are the parametric constants of the multiple regression model (determined by statistical methods on the basis of an experimental dataset)

IA-based THERMOPHYSICAL PROPERTY BOUNDS: DATA

	MIN	MAX	UNIT
SLAG DENSITY ($ ho$)	2.589·10 +3	2.755·10 ⁺³	(kg.m - ³)
SLAG VISCOSITY (μ)	2.400·10 ⁻²	3.046.10 ⁰	(Pa.s)
SLAG SURF. TENSION (σ)	3.680·10 ⁻¹	5.100·10 ⁻¹	(N.m ⁻¹)
SLAG JET VELOCITY (V)	5.000·10 -2	2.000·10 ⁻¹	(m.s -1)
SLAG DROP VELOCITY (v)	5.000·10 ⁻¹	2.000·10 ⁰	(m.s -1)
SLAG JET DIAMETER (D)	5.000·10 -2	2.000·10 ⁻¹	(m)
SLAG DROP DIAMETER (d)	1.000·10 -3	1.000.10-2	(m)

IA-based DIMENSIONLESS NUMBER BOUNDS: RESULTS

(with respect to molten s	lag jet)	MIN	MAX
REYNOLDS (Re)	$\mathrm{Re} = \frac{\rho \mathrm{V}L}{\mu}$	2.125·10 ⁰	4.592·10 ⁺³
CAPILLARY (Ca)	$Ca = \frac{\mu V}{\sigma}$	2.353·10 ⁻³	1.655 ·10 ⁰
OHNESORGE (Oh)	$Oh = \frac{\mu}{\sqrt{\rho\sigma L}}$	1.432·10 ⁻³	4.413·10 ⁻¹
LAPLACE (La)	$La = \frac{\sigma \rho L}{\mu^2}$	5.134·10 ⁰	4.879·10 +5
WEBER (We)	$We = \frac{\rho v^2 l}{\sigma}$	6.346·10 ⁻¹	5.989·10 ⁺¹

IA-based DIMENSIONLESS NUMBER BOUNDS: RESULTS

(with respect to molten s	lag drop)	MIN	MAX
REYNOLDS (Re)	$\mathrm{Re} = \frac{\rho \mathrm{V}L}{\mu}$	4.250·10 ⁻¹	2.296·10 +3
CAPILLARY (Ca)	$Ca = \frac{\mu V}{\sigma}$	2.353·10 ⁻²	1.655·10 ⁺¹
OHNESORGE (Oh)	$Oh = \frac{\mu}{\sqrt{\rho\sigma L}}$	6.403·10 ⁻³	3.121.10 ⁰
LAPLACE (La)	$La = \frac{\sigma \rho L}{\mu^2}$	1.027·10 ⁻¹	2.439·10+4
WEBER (We)	$We = \frac{\rho v^2 l}{\sigma}$	1.269·10 ⁰	2.995·10 ⁺²

$$\frac{d\mathbf{u}_{j}}{dt} = -\nabla p_{j} + \frac{\nabla j}{\nabla_{1} \operatorname{Re}} \Delta \mathbf{u}_{j} + \frac{2-j}{\operatorname{Fr}} \mathbf{k}_{x}$$
(1)

$$\mathbf{v} \cdot \mathbf{u}_j = 0, \ \frac{d\theta_j}{dt} = \frac{\kappa_j}{\kappa_i \operatorname{Pe}} \,\Delta\theta_j \ (j=1, \ 2).$$
⁽²⁾

$$\frac{dh}{dt} = v, \quad y = h(x). \tag{3}$$

28

11 AIChE

$$v_i = u_{iy} = \theta_{iy} = 0, \quad y = 0,$$
 (4)

$$[u]_2^1 = 0, \ [v]_2^1 = 0, \tag{5}$$

$$\left[-\frac{\mu}{\mu_{1}}\left\{u_{y}+v_{x}+2b\left(2v_{y}+\frac{v}{y}\right)\frac{1}{1-b^{2}}\right\}\right]_{2}^{1}=0,$$
(6)

$$\left[-\frac{\rho}{\rho_1}\rho + 2\frac{\nu}{\nu_1}\left\{(1+b^2)\nu_y + b^2\frac{\nu}{y}\right\}\frac{1}{(1-b^2)\operatorname{Re}}\right]_2^1 = -\frac{2}{\operatorname{We} R_S},$$
(7)

$$[\theta]_2^1 - 0, \tag{8}$$

$$\left[\frac{\lambda}{\lambda_1} \frac{\theta_y - b\theta_x}{V^1 + b^2} + \varepsilon \operatorname{Bo}\left(\theta + \frac{T_s^0}{\Delta T}\right)^4\right]_2^1 = 0, \qquad (9)$$

 $u_2 \rightarrow U_E(x), \ \theta_2 \rightarrow \theta_E(x), \ y \rightarrow \infty (|b| < 1).$ (10)

THE REDUCED MODEL w/ DIMENSIONLESS NUMBERS

29

FREE SURFACE SHAPE OF JETS (Georgiou et al., 1988)

30

AGENDA

- Mineral wool fiberization Mathematical modeling strategy
- Thermophysical properties of molten slag: Literature review
- Dimensional Analysis: Governing dimensionless numbers
- CFD analysis of nonisothermal vertical free surface flow
- Conclusions on process design and future research goals

MOLTEN SLAG JET FREE SURFACE FLOW IN MINERAL WOOL FIBERIZATION DIMITRIOS I. GEROGIORGIS AICHE 2011 ANNUAL MEETING

CFD ANALYSIS: COMPUTATIONAL DOMAIN & BASE CASE

32

MOLTEN SLAG JET FREE SURFACE FLOW IN MINERAL WOOL FIBERIZATION 11 AlChE **DIMITRIOS I. GEROGIORGIS** AIChE 2011 ANNUAL MEETING CFD ANALYSIS: EFFECT OF SLAG EMISSIVITY (ε) $\varepsilon = 0.70$ $\varepsilon = 0.80$ $\epsilon = 0.90$ $\varepsilon = 0.95$

<mark>1111111</mark>	<mark>11111111</mark>	<mark></mark>	111111	- 1400
	111111	111111	111111	
<mark>1111100</mark>	111110	111111	111111	
<mark>1111118</mark>	111116	111116	111111	1200
<mark>111110.</mark>	111111	111111	111111	
	111111	111111	111111	1000
	<u> </u>		111111 .	1000
$T_{out,min} = 860 \text{ K}$	828 K	800 K	788 K	800
T _{out,max} = 1401 K	1377 K	1355 K	1346 K	<i>T</i> (K)

MOLTEN SLAG JET FREE SURFACE FLOW IN MINERAL WOOL FIBERIZATION **DIMITRIOS I. GEROGIORGIS**

AIChE 2011 ANNUAL MEETING

36

11 AIChE

CFD ANALYSIS: EFFECT OF LADLE TEMPERATURE

T _{in} = 1773.15 K	T _{in} = 1823.15 K	T _{in} = 1873.15 K	T _{in} = 1923.15 K	2000
ugan.	114444 ····			1800
1111111	<mark></mark>	<mark>111111</mark>	<mark></mark>	
111111	1111111		<mark>11111</mark>	1600
11111111	<mark>11111111</mark>	11111	1111111	
1111110	11111	111111	111110 (S.	
111111	111111		11111	- 1400
11111.1.1	<u> </u>	11111	111100	
11111.0	111111	111110	111110	
111111	111111		111110	- 1200
11111.0	111111	111111	1111111	
111111	111111	1111111	11110.0	1000
111111	111111		IIIII.	1000
$T_{out,min} = 795 K$	798 K	800 K	803 K	800
$T_{out,max} = 1312 \text{ K}$	1334 K	1355 K	1378 K	<i>T</i> (K)

1500

1475

1450

1425

1400

38

---- DENSITY (p)

---- DENSITY (ρ)

---EMISSIVITY (ε)

POT TEMPERATURE (Tpot)

STREAM HEIGHT (L)

EMISSIVITY (ε)

STREAM HEIGHT (L)

POT TEMPERATURE (Tpot)

11AChE

VERTICAL SLAG STREAM BOTTOM **TEMPERATURE** (core = maximum)

TEMPERATURE, Tout,max(K) 1375 1350 1325 1300 930 $T_{out,min}(\mathbf{K})$ 910 **VERTICAL** 890 **SLAG STREAM** 870 TEMPERATURE, BOTTOM 850 **TEMPERATURE** 830 (skin = minimum) 810 790 770

MOLTEN SLAG DISINTEGRATION BY GAS (Silaev, 1966)

Fig. 1. Scheme of engagement between liquid metal stream and transverse gas jet: 1) gas jet; 2) liquid metal stream; 3) atomization zone.

$$\frac{a}{D_0} = F(\text{We, Lp}), \text{ (isolated drop)}$$

Fig. 5. Geometry of particles of Fe-Cr base alloy powder, \times 126: a) spherical particle shape; b) irregular (angular) particle shape.

We =
$$\frac{U_g^2 \varrho_g D_0}{\sigma_g}$$
 – is the Weber number

$$Lp = \frac{\mu_1^g}{\sigma_1 \varrho_1 D_0} - -is$$
 the Laplace number

5.4

MINERAL FIBRE LENGTH VARIATION (Kulago, 1986)

Fig. 1. Diagram of the perturbation of the surface of a melt: h) depth of boundary layer of gas; U) velocity of oncoming gas flow; L) length of solidifying section of fiber; O) origin of coordinates; the straight arrows denote the direction of the gas flow; the curves arrows, the direction of movement of the melt from the layer.

Length of obtained fibres:

Exptl. data: $L_{fibers} = 5-6 \text{ cm} (\pm 20\%)$

Fig. 3

Fig. 2. Decay of unperturbed surface of a jet of MV-3 oil in air for various sections: Reynold's No., Re = 29.87; Weber's No., We = 1244; $\rho_{\rm f}$ = 680 kg/m³; dynamic coefficient of viscosity of the oil $\mu_{\rm f}$ = 1.69·10⁻² kg/(m·sec); σ = 21.4·10⁻³ N/m.

Fig. 3. Decay of slightly perturbed jet of VM-3 oil in various sections; the applied perturbations were random; the numerical data is the same as in Fig. 2.

AGENDA

- Mineral wool fiberization Mathematical modeling strategy
- Thermophysical properties of molten slag: Literature review
- Dimensional Analysis: Governing dimensionless numbers
- CFD analysis of nonisothermal vertical free surface flow
- Conclusions on process design and future research goals

CONCLUSIONS

- Mathematical modeling strategy for mineral wool fiberization
 - Multiphase mass and heat flow study in three (3) distinct zones
- Systematic for multiphase mass and heat flow CFD modeling
 - Thermophys. property, multiphase flow, fiber processing literature
- Thermophysical properties (ρ , μ , σ) are crucial (already investigated)
 - **Temperature- & composition- dep. models yield** ρ - μ - σ variation ranges
- Dimensional Analysis employed to identify key dim/less numbers
 - Reynolds, Weber, Capillary and Laplace numbers govern fiberization
 - Interval Arithmetic (IA) provides fast computation of respective bounds
- Sensitivity CFD analysis of exit temperature profile w.r.t. parameters
 Emissivity, viscosity, jet size are pivotal; other phys. properties weaker

National Technical University of Athens School of Mining & Metallurgical Engineering

43