Mineral Processing & Extractive Metall. Rev., 33: 352–361, 2012 Copyright © Taylor & Francis Group, LLC ISSN: 0882-7508 print/1547-7401 online DOI: 10.1080/08827508.2011.601482

CARBOTHERMIC REDUCTION OF ALUMINA BY NATURAL GAS TO ALUMINUM AND SYNGAS: A THERMODYNAMIC STUDY

M. Halmann¹, M. Epstein², and A. Steinfeld^{3,4}

¹Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel ²Solar Research Unit, Weizmann Institute of Science, Rehovot, Israel

³Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland

⁴Solar Technology Laboratory, Paul Scherrer Institute, Villigen, Switzerland

The carbothermic reduction of alumina to aluminum by methane is analyzed by thermochemical equilibrium calculations in order to determine its thermodynamic constraints. Calculations predict that in the temperature range $2300-2500^{\circ}$ C at 1 bar pressure, the reaction $Al_2O_3 + 3CH_4 = 2AI + 6H_2 + 3CO$ should occur without significant interference by the formation of unwanted byproducts such as Al_2O , Al_4C_3 , and Al-oxycarbides, and with higher yields than by using solid carbonaceous compounds as reducing agent. The reaction was examined for several initial $Al_2O_3ICH_4$ molar ratios. The proposed process may be carried out in a fluidized bed reactor using concentrated solar energy, induction furnaces, or electric discharges as sources of high-temperature process heat. An important advantage of such a process would be the coproduction of syngas, with the molar ratio $H_2ICO = 2$, suitable for the synthesis of liquid hydrocarbon fuels and polymeric materials.

Keywords: Al-oxycarbides, alumina, aluminum, carbothermic, exergy, methane, natural gas, syngas

INTRODUCTION

Much effort has been spent to achieve the carbothermic reduction of alumina to aluminum as an alternative to the electrolytic Hall–Héroult process (Choate and Green 2006). In most of these studies, the carbonaceous reducing agent has been a solid, such as activated charcoal (Murray, Steinfeld, and Fletcher 1995; Halmann, Frei, and Steinfeld 2007; Kruesi et al. 2011). These were thus, at least formally, solid–solid reactions, although their mechanism may include gas–solid reaction steps (Cox and Pidgeon 1963; Fruehan, Li, and Cargin 2004). Using a solid carbon source or CH_4 as reducing agents, the overall reactions are

$$Al_2O_3 + 3C = 2Al + 3CO \Delta H_{298K} = 1344.1 \text{ kJ mol}^{-1}$$
(1)

Address correspondence to M. Halmann, Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel. E-mail: m.halmann@weizmann.ac.il

CARBOTHERMIC REDUCTION OF ALUMINA BY NATURAL GAS

$$Al_2O_3 + 3CH_4 = 2Al + 3CO + 6H_2 \Delta H_{298K} = 1568.7 \text{ kJ mol}^{-1}$$
(2)

Only a few studies have considered reaction (2). The reduction of Al_2O_3 to Al under Ar and CH₄ at atmospheric pressure was studied experimentally in a radio-frequency generated induction-coupled plasma at above 10,000°C. The reduction products collected on water-cooled probes contained Al and Al_4C_3 (Rains and Kadlec 1970). Attempts were made to achieve the reduction by CH_4 of Al_2O_3 contained in a graphite crucible under concentrated solar irradiation. However, at 1400°C, only cracking of CH_4 to H_2 and carbon was observed (Petrasch 2002). Thermochemical calculations on the equilibrium composition reached from an initial reaction mixture of $Al_2O_3 + 4CH_4 + 0.4O_2$ at 1 bar predicted 91% conversion to Al at 2400°C (Halmann, Frei, and Steinfeld 2007). Equilibrium compositions as a function of temperature and enthalphies of reaction described in the present work were calculated using the HSC code (HSC Chemistry Computer Code). Similar results were obtained using the FactSage code (FactSage), except for the temperature region of 1500–2300°C, at which the HSC code listed Al₂CO, Al₄CO₄, carbon, and Al₂O(g), while the FactSage code instead listed Al₄C₃(s), C(gr), and Al₂O(g). In the region important for Al(g) production, 2300-2500°C, both codes predicted H₂(g), CO(g), and Al(g) as practically the only products. The reaction onset temperature was taken at about 0.001% conversion of the Al_2O_3 to the metal.

THERMODYNAMIC ANALYSIS

The System $AI_2O_3 + 3CH_4$

AI2O3

1000

0.0

500

The temperature dependence of the equilibrium composition for the initial reaction mixture of $Al_2O_3 + 3CH_4$ is presented in Figure 1. At 2500°C, the equilibrium

Figure 1 System $Al_2O_3 + 3CH_4$ at 1 bar (color figure available online).

1500

∠Al2CO

2000

H(g)

. AlH(g)

2500 C

Temperature

composition is represented by the reaction

$$\begin{aligned} Al_2O_3 + 3CH_4 &= 5.61H_2(g) + 2.97CO(g) + 1.82Al(g) + 0.65H(g) + 0.035Al_2O(g) \\ &\quad + 0.10AlH(g) \end{aligned} \tag{3}$$

The enthalphy of the reaction at 2500°C is 1978.9 kJ/mol Al₂O₃. In the temperature range 1500–1800 K, the predominant carbon species is C(gr), probably due to dissociation (cracking) of methane. From 1700 to 2300°C, the formation of aluminum oxycarbides Al₂OC and Al₄CO₄ and of Al₂O(g) is thermodynamically favored. In experiments on the Al₂O₃ + 3C reaction at 1 bar under induction furnace heating, the solid products isolated on the cool reactor wall contained Al, Al₂OC, Al₄CO₄, and Al₄C₃ as identified by XRD analysis (Halmann, Frei, and Steinfeld 2007). Al₂OC had been reported to decompose at below 1715°C, according to the reaction (Lihmann, Zambetakis, and Daire 1989)

$$4\mathrm{Al}_2\mathrm{OC} = \mathrm{Al}_4\mathrm{CO}_4 + \mathrm{Al}_4\mathrm{C}_3 \tag{4}$$

producing aluminum carbide. The formation of Al_4CO_4 can also be explained by the reaction of Al_2OC with alumina (Lihmann, Zambetakis, and Daire 1989)

$$Al_2OC + Al_2O_3 = Al_4CO_4$$
(5)

Pertinent to aluminum production is the lowest temperature at which the production of gaseous Al will be accompanied only by the syngas mixture of H₂ and CO (and a minor amount of Al₂O), 2300°C. In the temperature range 2200–2500°C, the H₂/CO molar ratio of the syngas mixture would be 2.1–1.9, suitable for methanol synthesis or for Fischer–Tropsch conversion to liquid hydrocarbons. The onset of Al(g) production (calculated by the FactSage code) occurs at a considerably lower temperature for the reduction of alumina by methane (Eq. 2) than by solid carbon (Eq. 1), as shown in Table 1. This onset of Al vapor pressure obviously occurs at a much lower temperature than the boiling point of aluminum metal, 2519°C.

Table 1 Calculated onset temperature for Al(g) appearance and percent conversion of Al₂O₃ to Al(g) by reactions with different initial Al_2O_3/CH_4 molar ratios, and with $Al_2O_3/3C$ (from Kruesi et al. 2011)

Reactants	Onset temperature (°C) for Al(g) production	Percent Al ₂ O ₃ conversion to Al(g) at 2300°C
$Al_2O_3 + 2.5CH_4$	1342	46.4
$Al_2O_3 + 3CH_4$	1342	82.5
$Al_2O_3 + 4CH_4$	1342	87.0
$Al_2O_3 + 6CH_4$	1342	88.5
$Al_2O_3 + 3CH_4 + 10Ar$	1342	90.0
$Al_2O_3 + 3CH_4 + 20Ar$	1342	92.5
$Al_2O_3 + 4CH_4 + H_2O$	1581	83.0
$Al_2O_3 + 3C$	1943	69.3

The System Al₃C₄ +Al₄CO₄

This combination shows that Al_2CO is the more stable compound below $\sim 1500^{\circ}C$ and that the carbide is not stable in the presence of alumina. The reactions accounting for the formations of the aluminum oxycarbides are (Lihmann, Zambetakis, and Daire 1989; Fruehan, Li, and Cargin 2004)

$$Al_2O_3 + Al_4C_3 = 3Al_2CO \tag{6}$$

$$Al_2O_3 + Al_4C_3 = Al_4CO_4 \tag{7}$$

$$Al_3C_4 + Al_4CO_4 = 4Al_2CO \tag{8}$$

in which Eq. (8) is the reverse of Eq. (4), and in which the mixture $Al_2O_3+Al_4C_3$ may form a liquid slag in the temperature region of 1850–2160°C, while Al-C may form a liquid alloy above 2160°C. The temperature dependence for the $Al_3C_4 + Al_4CO_4$ system is shown in Figure 2. At above about 1300°C, Al_2CO is converted to Al and C, and above 2000°C to CO(g) and $Al_2O(g)$.

The System Al₂O₃+2.5CH₄

With an initial molar ratio $CH_4/Al_2O_3 = 2.5$, providing less than the required carbon component for the stoichiometry of Eq. (1), the predicted production of Al(g) is accompanied by a substantial amount of the Al-suboxide, $Al_2O(g)$, as shown in Figure 3, resulting in much decreased Al(g) production (see Table 1).

Figure 2 System $Al_3C_4 + Al_4CO_4$ at 1 bar (color figure available online).

M. HALMANN ET AL.

Figure 3 System $Al_2O_3 + 2.5CH_4$ at 1 bar (color figure available online).

The Systems $AI_2O_3 + 4CH_4$ and $AI_2O_3 + 6CH_4$

With an excess of CH₄ relative to the stoichiometric CH₄/Al₂O₃ ratio of Eq. (1), the equilibrium product compositions involve large amounts of C(gr) accompanying the formation of Al(g) (see Figures 4 and 5). The products are similar to those described in Figure 1 except that C_2H_2 increases at higher temperatures.

Figure 4 System $Al_2O_3 + 4CH_4$ at 1 bar (color figure available online).

Figure 5 System $Al_2O_3 + 6CH_4$ at 1 bar (color figure available online).

The System $AI_2O_3 + 4CH_4 + H_2O$

Addition of 1 mol of H_2O results in "steam-reforming" of the excess of carbon in the system of $Al_2O_3 + 4CH_4$, with increased production of H_2 and CO, but decreased production of Al(g), as shown in Figure 6, and listed in Table 1.

Figure 6 System $Al_2O_3 + 4CH_4 + H_2O$ at 1 bar (color figure available online).

M. HALMANN ET AL.

Figure 7 System $Al_2O_3 + 3CH_4 + 10Ar$ at 1 bar (color figure available online).

The System $AI_2O_3 + 3CH_4 + 10Ar$ and $AI_2O_3 + 3CH_4 + 20Ar$

Dilution of methane (3 volumes) by argon (10 or 20 volumes) results in significant calculated decreases in the production of $Al_2O(g)$, and enhancement in the production of Al(g) (Figures 7 and 8, in which the data for Ar are omitted for clarity of the figures) relative to those in the absence of argon (Figure 1), as described in Table 1.

Figure 8 System $Al_2O_3 + 3CH_4 + 20Ar$ at 1 bar (color figure available online).

EXERGY EFFICIENCY

Exergy, or thermodynamic availability, represents the theoretical optimum work that can be performed as a result of the change of the state of a system to an equilibrium state (Halmann and Steinfeld 2006). The exergy efficiency is, here, represented by the ratio of maximal work output that can be extracted from the products, such as ΔG of the complete oxidation of the products, to the enthalphy change of the reduction, and the heats of combustion (HHV) of the reactants (e.g., HHV_{CH4} = 890.8 kJ/mol), all calculated at 25°C. The reaction is assumed to occur as described in Eq. (3) for 2500°C, for which the enthalphy of the reaction is 1978.9 kJ/mol Al₂O₃, but disregarding the minor products H(g) and Al₂O(g). The estimated exergy efficiency would be 75.9%.

DISCUSSION

Above about 700°C, in the presence of alumina particles which provide nucleation sites, CH_4 undergoes heterogeneous dissociation (cracking) to H_2 and C(gr). Above its melting point (2072°C), Al₂O₃ will be liquid, and the reaction with C(gr) will be a liquid-solid process. However, up to about 2200–2300°C, the formation of Al(g) is accompanied by the byproducts $Al_2O(g)$, Al-oxycarbides, and $Al_4C_3(s)$. In the temperature range of 2300–2500°C, the carbothermic reduction of alumina should occur without these unwanted byproducts. The calculated onset of Al(g) appearance for most of the reaction systems studied above with CH₄ as reducing agent is at 1342° C, while by reduction with solid carbon compounds the calculated onset of Al(l) is at 1983°C (Kruesi et al. 2011). As shown in Table 1, the presence of argon results in a marked increase in the calculated yield of conversion of alumina to aluminum, but its use would be prohibitive in a commercial application. The practical realization of the carbothermic reduction of alumina by methane to syngas and aluminum could be achieved by passing methane over alumina particles in a fluidized bed reactor. A similar process had been carried out for the combined calcination of CaCO₃ and CO_2/CH_4 reforming to lime and syngas in a particle flow reactor under concentrated solar radiation (Nikulshina, Halmann, and Steinfeld 2009). Process heat at the required temperatures could be supplied by concentrated solar energy (Steinfeld 1997; Murray 2001; Steinfeld and Palumbo 2001), by induction furnace heating, or by electric discharges (Rains and Kadlec 1970). Achievement of such high temperatures by solar energy will require secondary concentration, e.g., compound parabolic concentrators (Welford and Winston 1989). A mean solar concentration ratio exceeding 3000 suns (1 sun = 1 kW/m^2) was applied to a 10kW solar reactor for the thermal dissociation of ZnO at above 1700°C (Schunk et al. 2008; Schunk, Lipinski, and Steinfeld 2009). In a study of the direct solar water dissociation, a radiation concentration of the order of 10,000 was necessary to reach a temperature of 2200°C (Kogan 1998). A major advantage of carrying out the carbothermic reduction of alumina by the reaction with methane, relative to the solid-solid reaction (such as with charcoal, petcoke, or coke) would be the coproduction of syngas, useful for its conversion to liquid fuels or polymers, and with much decreased CO₂ emissions. Another advantage of methane relative to charcoal would be the absence of the metal and nonmetal impurities

M. HALMANN ET AL.

contained in plant-derived carbonaceous reactants. The main drawback would be the higher required reaction temperature, since it would be unfeasible to perform this reaction under vacuum. For the solid-solid carbothermic reduction of alumina, the necessary reaction temperature may be lowered even by 1000°C by operating under vacuum (Halmann, Frei, and Steinfeld 2011; Kruesi et al. 2011). To separate Al gas from H_2 and CO, one could apply the quenching device which was demonstrated to separate Zn from a gas mixture of Zn(g) and O_2 , and in which the product gases were quenched by water-cooled surfaces and by injection of cold Ar at cooling rates from 20,000 to 120,000 K/s, suppressing the formation of ZnO in the gas phase and at the walls, and removing the O_2 (Gstoehl et al. 2008). In an adaptation of such a device to the aluminum separation by condensation on a cool surface, the outgoing Ar, H_2 , and CO gas mixture could be cooled and pressurized to the condition required for methanol synthesis, passed over a methanol synthesis catalyst, while the argon would be recycled to the quenching device. Such an operation would also avoid the build-up of gas pressure in the reactor. An alternative approach for the separation of Al from the syngas could be by bubbling of the product mixture through liquid Al, which would require the absence of reaction of the CO with the liquid Al. Obviously, the reactor must be air-tight, both for safety reasons and to prevent reoxidation of aluminum. Experimental tests will be required to determine the kinetic rates of the pertinent reactions.

ACKNOWLEDGMENTS

The research leading to these results has received partial funding from the European Union Seventh Framework Programme ([FP7/2007-2013]) under grant agreement no. ENER/FP7EN/249710/ENEXAL.

NOMENCLATURE

Al(g) gaseous Al

C(gr) graphite

REFERENCES

- Choate, W. and Green, J., 2006, "Technoeconomic assessment of the carbothermic reduction process for aluminum production." *Light Metals*, pp. 445–450.
- Cox, J. H. and Pidgeon, L. M., 1963, "The aluminum-oxygen-carbon system." Canadian Journal of Chemistry, 41, pp. 671–683.
- FactSage, Thermochemical Software & Database Package, Centre for Research in Computational Thermochemistry, Ecole Polytechnique de Montreal, Canada, http:// www.crct.polymtl.ca.
- Fruehan, T. J., Li, Y., and Cargin, G., 2004, "Mechanism and rate of reaction of Al₂O, Al, and CO vapors with carbon." *Metallurgical and Materials Transactions B*, 35(4), pp. 617–623.
- Gstoehl, D., Brambilla, A., Schunk, L. O., and Steinfeld, A., 2008, "A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO." *Journal of Materials Science*, 43, pp. 4729–4736.

- Halmann, M., Frei, A., and Steinfeld, A., 2007, "Carbothermal reduction of alumina: thermo-chemical equilibrium calculations and experimental investigation." *Energy*, 32, pp. 2420–2427.
- Halmann, M., Frei, A., and Steinfeld, A., 2011, "Vacuum carbothermic reduction of Al₂O₃, BeO, MgO-CaO, TiO₂, ZrO₂, HfO₂+ZrO₂, SiO₂, SiO₂+Fe₂O₃, and GeO₂ to the metals. A thermodynamic study." *Minerals Processing & Extractive Metallurgy Review*, 32(4), pp. 247–266.
- Halmann, M. and Steinfeld, A., 2006, "Thermoneutral tri-reforming of flue gases from coaland gas-fired power stations." *Catalysis Today*, 115, pp. 170–178.
- HSC Chemistry Computer Code V.6.0, Roine, A., Outokumpu Technology, Pori, Finland.
- Kogan, A., 1998, "Direct solar thermal splitting of water and on-site separation of the products – II. Experimental feasibility study." *International Journal of Hydrogen Energy*, 23(2), pp. 89–98.
- Kruesi, M., Galvez, M. E., Halmann, M., and Steinfeld, A., 2011, "Solar aluminum production by vacuum carbothermal reduction of alumina – thermodynamic and experimental analyses." *Metallurgical and Materials Transactions B. Process Metallurgy and Materials Processing Science*, 42(1), pp. 254–260.
- Lihmann, J. M., Zambetakis, T., and Daire, M., 1989, "High-temperature behavior of the aluminum oxycarbide Al₂OC in the system Al₂O₃-Al₄C₃ and with additions of aluminum nitride." *Journal of the American Ceramic Society*, 72(9), pp. 1704–1709.
- Murray, J. P., 2001, "Solar production of aluminum by direct reduction: preliminary results for two processes." *Journal of Solar Energy Engineering*, 123(2), pp. 125–132.
- Murray, J. P., Steinfeld, A., and Fletcher, E. A., 1995, "Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides." *Energy*, 20, pp. 695–704.
- Nikulshina, V., Halmann, M., and Steinfeld, A., 2009, "Co-production of syngas and lime by combined CaCO₃-calcination and CH₄-reforming using a particle-flow reactor driven by concentrated solar radiation." *Energy & Fuels*, 23, pp. 6207–6212.
- Petrasch, J., 2002, "Thermal modeling of solar chemical reactors." M. Sc. thesis, ETH Zurich, Swiss Federal Institute of Technology.
- Rains, R. K. and Kadlec, R. H., 1970, "The reduction of Al₂O₃ to aluminum in a plasma." *Metallurgical Transactions*, 1, pp. 1501–1506.
- Schunk, L., Haeberling, P., Wepf, S., Wuillemin, D., Meier, A., and Steinfeld, A., 2008, "A solar receiver-reactor for the thermal dissociation of zinc oxide." ASME Journal of Solar Energy Engineering, 130, p. 021009.
- Schunk, L., Lipinski, W., and Steinfeld, A., 2009, "Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – experimental validation at 10 kW and scale-up to 1 MW." *Chemical Engineering Journal*, 150, pp. 502–508.
- Steinfeld, A., 1997, "High-temperature solar thermochemistry for CO₂ mitigation in the extractive metallurgical industry." *Energy*, 22, pp. 311–316.
- Steinfeld, A. and Palumbo, R., 2001, Solar Thermochemical Process Technology, Encyclopedia of Physical Science and Technology, New York: Academic Press, Vol. 15, pp. 237–256.
- Welford, W. T. and Winston, R., 1989, Nonimaging Optics, San Diego: Academic Press.